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Abstract

A phenomenclogical theory is developed for the
propagation of plane electromagnetic waves in a deformed
non-absorbing centrosymmetric isotropic material. It is
assumed that the dielectric constant and specific reluctance
matrices depend on the deformation gradients at the instant
of measurement. The theory is formulated from both the
Eulerian and Lagrangian standpoints.
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1. Introduction

In this paper we consider the propagation of plane
electromagnetic waves in a non-absorbing material which is
subjected to finite deformations. It is assumed that the
material is isotropic when undeformed and when no electxo-
magnetic fields are present and that it is centrosymmetric.

The theory is formulated from both Eulerian and Lagrangian
points-of-view. The latter formulation rests on the Lagrangian
formulation of Maxwell's equations for a deformed material due
to Walker, Pipkin and Rivlin [1].

In each case the assumption is made that the material
is linear with respect to electromagnetic effects, but that
the dielectric constant and specific reluctance matrices may
depend on the displacement gradients in the material. It
follows from the isotropic character of the material that the
dielectric constant and specific reluctance matrices are
isotropic matrix functions of the Cauchy and Finger strains,
accordingly as the Lagrangian or Eulerian formulation is adopted
and may be expressed in terms of these in canonical forms. In
each case we obtain from the constitutive equations and Maxwell's
equations a secular equation for the determination of the slow-
ness of a plane electromagnetic wave, propagating in an arbitrary
direction in a material which is subjected to a pure homogeneous
deformation.

We pursue the study of this equation in the Eulerian
case and obtain the six principal slownesses. It is found
that there is a relation between these six slownesses. In the
case when only the dielectric constant or only the specific
reluctance depends on the deformation, this single relation is
replaced by three relations.
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We then discuss the propagation of the electromagnetic
wave in any direction in a principal plare. In 88 5 and 6 we
consider propagation in a material which is subjected to shear-
ing deformations.

Firally in § 7 we consider the application of the
theory to materials for which the dielectric constant and
specific reluctance matrices depend on the history of the de-
formation, but in which the deformation is held constant.
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2. The constitutive equations

(a) Eulerian formulation

We consider a body to undergo a deformation which
is described in a rectangular cartesian coordinate system x
by

x, = x.(t) = x. (X,,t), (2.1)
where X, is the position in the system x, at time t, of a
particle which was at xA in the same system at a reference
time to.

We make the constitutive assumption that the electric
displacement field Ei, at time t, depends only on the electric
field ep and deformation gradients x A measured at the particle
considered at time t. We also assume that the dependence of
Ei on Ep is linear. We make the agglogous constitutive assumption
that the magnetic induction figld bi' at time t, depends only on
the magnetic intensity field hp and deformation gradients XP’A,
the dependence on the former being linear.

If the material is isotropic in its reference state,
it follows [2] that

di = kijej and hi = wijbj’ (2.2)

where kij' the dielectric constant tensor, and W,

3t the specific
reluctance tensor, are given by

kij=k6' + k.cC +k2c

0 i} 1%i 3 ik%kj

and (2.3)




where cij is the Finger strain tensor defined by

cij = xi,AxJ,A - GiJ‘ (2.4)

w,. are functions of the invar-

In (2.3), ko, kl' k2' wol wll 2

3

|
iants tr ¢, tr c2, tr c¢~, where c =| ciJ Introducing
the notation k = kij”' e = (E;), with analogous meanings

for other bold-face symbols, we may rewrite (2.2) as

d = k.§ and 5 = g.g, (2.5)
where
k =k I+k.c+ k.c?
o o~ 17 - !
(2.6)

2
= + +
W= wl+wctowcy

and I denotes the unit matrix.
For a plane electromagnetic wave, adopting the usual
complex notation, we may write e, h, d, b in the form

) = (e, h, 4, b) e 10E:x-t) (2.7)

14

(gr )

I 3=a
2 gul
O

where e, g, g, g and s are vectors which may be real, imaginary,
or complex constants. s is the complex slowness of the wave

and w is its angular frequency. Then, the constitutive equations
(2.5) become

d = k.e, h = w.b, (2.8)

1HWe will see later that for the constitutive eguation discussed

here, the case when s is complex can be ruled out.

s e
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(b) Lagrangian formulation

An alternative formulation may be attained in the
following way. In accord with Walker, Pipkin and Rivlin
(1], we define the reduced fields E, H, g, D by the equations

— * — k.
E = F.e, H= F.h,
(2.9)
§ = (det F) g‘l.g and D = (det F) F~*.§,
where the notation
t
g —! FiA ~l Xi,A“ (2.10)

is used and the star denotes the transpose. The constitutive

assumptions made as a basis for the Eulerian formulation are

equivalent to the assumptions that D and B are linear functions

of E and H respectively and both D and B depend on F,

Then, the assumption that the material is isotropic
in its reference state leads to the conclusion that

D =K.E and H = 0.B (2.11)
and K and Q are expressible in the forms
K=KTI+K.C+ K.C°
~ O~ 1< 2~
and (2.12)
Q=QI+QcC+0ac
~ o~ 1~ 2s !

where C is the Cauchy strain defined by




<= =

s

¢ 1 %i,4%51,8 T °aB

AB (2.13)

Q, are functions of tr C, tr C 2, tr C3.

and Ko, Kl’ K 1 9 C

or %o &

The relations between Ka’ Qa (0=0,1,2) and ka’ 0,
(0=0,1,2) can be derived, However, the algebra involved is
somewhat cumbersome.

Now, we consider the electromagnetic wave for which,

adopting the usual complex notation,

(E,

2 iy
o]l
2 59|
I
)
s
-~
)
o
®

' (2.14)

where E, H, D, B and S may be real, imaginary or complex
constant vectors. We obtain from (2.11)

D = K.E, H= 8.?. (2.15)

We note that if the electromagnetic fields e, h, d, b corres-

[Rep|

pond to a plane wave, i.e., are of the form (2.7), the derived
electromagnetic fields E, H, D, B will not, in general, have
the form (2.14).
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3. Derivation of the secular equaticn

{a) Eulerian formulation

Maxwell's equations may ke written in the form

curl e = -3b/dt, curl h = 8d/at, (3.1)
where

(curle); = e, e .. (3.2)
Introducing (2.7), we obtain

£ 5%55% = bi’ Eijksjhk = -di. (3.3)

Eliminating e, h and 9 from equations (3.3) and (2.8), we
obtain,

. -1 _
[;ij + eipqsmrsspsrwqm(§ );;]dj = 0. (3.4)

Alternatively eliminating e, h and d from equations (3.3)
and (2.8) we obtain

. -1 -
[;ij + eipqemrsspsr(E )qmwéglbj =0. (3.5)

Equaticn (3.4) yields a non-trivial solution for
d and (3.5) yields a non-trivial solution for b provided
that

lkiJ + eipqejsrspsrqul = 0. {3.6)
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For the wave (2.7), the planes of constant phase
are )
+
s .X = constant (3.7)
and the planes of constant amplitude are
s .x = constant. (3.8)

In the particular case when these are the same, we may write

s = sn, {3.9) .
where n is a (real) unit vector and s is a constant which may

be real, .maginary, or complex. Then, eguations (3.4) and (3.5)

become

2 —
[:613 t s €.qu mnrs p r qm(E )ég]dj =0

and (3.10)

[:613 + g2 lpqemrsnpnr(ls qmw%;J bJ =0,

and (3.6) yields the secular equation for the complex
slowness s,

° |

|kij t 85 s rPppls !l = 0 (3.11)

We shall call the directicn of n the direction of propagation
of the wave.

It is shown in the Appendix that (3.11) may be written
as

s - Ys~ + 8

0, (3.12)
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where

v = n.{(tr k o)k -k o }.n, (3.13)
6 = det &.

Equations (3.10) may be simplified slightly by
choosing the reference system so that the unit normal to the
wave-front is in the direction of the x3-axis, i.e., so that

n, = 613. Equations (3.3) then yield, with (3.9),

P N

d3 = b3 =0 (3.14)

and equations (3.10) become

2 -1 _
[—;as - S anepTwYT(E );; dB =0

and (3.15)

2 -1 -
[:%as s anepT(§ )YTQEE]bB =0,

where Greck indices take the values 1, 2 and eaB denotes the
two-dimensional alternating symbol.

It is evident from (3.14) and (3.15) that the wave
is, in general, polarized elliptically with its electric
displacement and magnetic iaduction fields in planes normal
to the direction of propagation. It then follows from (2.8)
that e and h are, in general, not perpendicular to the
direction of the propagation.
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Introducing n, = 613 into (3.11), or more simply
from (3.15) we can rewrite the secular equation as

2 _ .
|k0‘B - s €dY€8TwYT| = 0. (3.18)
From (3.12), s2 is given by

2

s? = {ypr(y?

- 484) 12} /20 (3.17)
These values of s° are real if and only if
p2> 409, (3.18)

If both of the values of 52 given by (3.17) are positive,

then we obtain two positive values cf s and two negative
values. This corresponds tc the possibility of two waves

in the positive direction of n and two waves in the negative
direction. If, on the other hand, ¢,y and 6 are such that
for any n, one of the values of 32, given by (3.17), is
negative, the corresponding values of s are imaginary. The
material would then be inherently electromagnetically unstable
in the state of deformation considered.
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(b) Lagrangian formulation

It has been pointed out by Walker, Pipkin and
Rivlin [1] that in terms of the derived electromagnetic
fields E, H, D and B, Maxwell's equations can be written as

curl E = - 8B/3t, curl H = 3D/dt, (3.19)

~

where

(Curl g)A = EABCEC,B° (3.20)

Introducing (2.14) into (3.19), we obtain

S.E, =B S_H, = -D

€aBC®BYC A’ EaBc®rUc A* (3.21)

Eliminating E, H and B from (3.21) and (2.15), we obtain

(GAB * €4pursSpSrqu (K )s;]DB = 0. (3.22)

Again, eliminating E, H and D from (3.21) and (2.1l5) we
obtain

[}AB + APO €MRs SpSg (K QM9§J By = 0. (3.23)

Again, if the planes of constant amplitude and phase
in the X-space are the same and N is the unit normal perpendicular
to this plane, we may write analogously with (3.9),

S = 8N, (3.24)

~

where S is a constant which may be real, imaginary, or
complex. Then, equations (3.22) and (3.23) become

1

C e e s L s
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] AB €apq* MRSNPRRQQM(K )SB Dy =10

Lewes —

and (3.25)

-1 _
$up * 5 €1paCurspMr K ) quisp| B = O0-

- —

The secular equation for S is

S 2, -
' [Ryp + 7€ ppqEmmyNpNlqul = 0- (3.26)

i Following a procedure similar to that used in the Appendix
2 % to derive (3.12), we can express (3.22) in the form

3 | ¢sh ~ys2 4 g = 0, (3.27)

where

¥ = N.{(tr KQ K=K 5}.N, (3.28)

®
]
o}
(0]
ct
=
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4. Pure homogeneous deformation

(a) Propagation in principal direction

We now suppose that the deformation to which the
body is subjected is the pure homogeneous deformation, the
principal directions for which are along the axes of the ref-

erence system x. Then

c;y = 0 (if3) (4.1)

and it follows from (2.3) that

kiJ =0, Wiy =0 (i3) . (4.2)
The principal waves are waves for which the directions
of propagation are along the principal directions of strain,

i.e., the waves for which

n, =6

N 117 6i2’ or Gi (4.3)

3.

We consider first the waves propagated along the x3-axis.
Then, introducing (4.2) into (3.16), we obtain

2

kKyp = 8 Wypv 0
= 0, (4.4)
2,
0 ,k22 - s wll
whence
s? =k /w,, Or s? =k /w (4.5)
117 722 227 711" ¢

Y

R ol P R SN
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We assume that these quantities are positive and consider

the waves corresponding to the positive square roots, i.e.,

the waves travelling in the positive direction of the x_-axis.

3
We employ the notation

s 1/2 S B 1/2

13 = (kg 0pp) 770 sp5 = (kpp/uy ) 700 (4.8)

We note from (3.15) that, for the wave for which s
da

= s

1
5 bl = 0 and, for the wave for which s = 523, dl =D
Thus, the former wave is polarized with d and b in the x
and x

3’
5 = 0.

1
5 directions respectively and the latter with d and b

in the x, and X, directions respectively. It follows from

(4.2) that for these waves e is polarized in the same direction
as d and h in the same direction as b.

More generally, we adopt the notation that sij (i$35)
is the slowness for the principal wave whose direction of

propagation is along the xj-axis and which is polarized with

its electric displacement field in the xi—direction. Then,

analogously with (4.6), we have the further relations

1/2 1/2

S3p = (kgg/wyg) ™ 7, 8y, = (kg /wgl) ™o,

(4.7)
s 1/2 - y1/2

= =
01 = (Kpp/w33) "% 83y = kg /uy,

It follows from (4.6) and (4.7) that

$13532521 T S2351553; (4.8)

and this relation is valid for any constitutive equations of

the form (2.8) with E and w given by (2.6), ko, kl’ k2 and

W Wy 0, being arbitrary functions of tr ¢, tr c2 , tr c3.

~

v et et e
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In the case when wl = w, = 0 and W is constant,

i.e. the specific reluctance is independent of deformation,

we have Wy = Wyp = w33 = W, and it follows from (4.6) and
(4.7) that

sl3 = 312, 321 = 523, 532 = s31. (4.9)

If on the other hand kl = k2 = 0 and ko is constant, i.e.

the dielectric constant is independent of deformation, we have

kll = k22 = k33 = ko and it follows from (4.6) and (4.7)
that

523 = 532, s13 = 531, Sy = Syp¢ (4.10)

<

e g
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(b) Direction of propagation in principal plane

We shall now censider the somewhat more general
case when the direction of propagation n is in the plane
‘ formed by two of the principal directions of strain. Choosing

the coordinate system x with the xe-axis perpendicular to this
§ plane, we have

:

i

;\ n, = (nl,O,n3), (4.11)

and the. Finger strain components are, as before,cij, with
ciJ = 0 (i$j). We choose a new coordinate system X with the
‘ axis i3 parallel to n and ie coinciding with X,+ Then

ii = aijxj’ (4.12)

where a; is given by

J
n3, 0' -nl!
|
I
| a] = o0 |- (4.13)
h !
nl, 0, n3 }

The components 513 of the Finger strain tensor in the system
X are given by

~

cij = aipajqcpq. (4.14)
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Thus,
]§ 2 2
i, —
i C11M3 T Ca30yy 0 r (Gy=C55)ny 0,
I
i3] ° i 0 ' Cop v 0
5 2 2
l (¢;,-¢c35)n 05, 0 r Gy F G330
and (4.15)
l 2 2 2 2 2
i clln3 + c33nl, 0 ’ (éil c33)nln3
s :
! Cik%ryl| T % 0 ' Cop ¢ 0
i !
d .2 _ 2. 2 2 2 2
i (cll c33/nln3, ¢ r G0y + c33n3

Referred to the system X, the dielectric constant and inverse
magnetic permeability matrices, k and & respectively, are, by
analogy with the relations (2.3),given by

kiJ = ko6iJ + klcij + kecikckj

and (4.16)

ij 0°1}j 13 7 “2CixCky’

e L

L A Ty
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where ko, kl, ceer W, have precisely the same meanings as

in (2.3). Since tr ¢, tr c2, tr ¢3 are invariant under

orthogonal transformations, ko’ ceey W
as functions of tr ¢, tr 62, tr 63
are functions of tr c, tr 02, tr c3

(4.16) , we see that

, May be expressed
of the same forms as they
. Introducing (4.15) into

> el o~ - ~=1 =
ki,j_ (}S )ij—wij (9 )_‘J 0,

(ij = 12, 21, 23, 32). (4.17)

Introducing (4.17) into the secular equation (3.16),
with k and w replaced by k

~

and & respectively, we obtain

2 _ .2
s = 84 (say)

]
PR

or (4.18)

|
Eak

_ 22
ST =S, (say)

Again assuming kll/w22 and k22/wll are both positive, we see

from (3.15), with E, W, § and 9 replaced by E, @, § and 5
respectively, that for the wave for which s = d

= 513’ d2 = bl =0
and for the wave for which s =

~

Sp3r 4y = b,

|1}

A sl

P I T
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5. Simple shear

We now consider the case when the deformation is a

simple shear of amount &k, described in the rectangular cartesian
coordinate system x by

= X_ 4+ k¥.. (5.1)

2 3 3 1

We consider a wave propagated in the positive direction of the

x3-axis, sc that

i i3° (5.2)

O, 0' K K2l OI K3
|
cij = OI Ol 0 14 I cikckj = Ol OI O . (503)
| K, 0, Kei K3I 0, K2+Kh I
i
Introducing (5.3) into (2.3) we obtain
2 2 |
k tk,k ' 0 v Kk +k,K) ;
I ) ?
igh = ' o ’ 0 5
i |
2 2
k., +k 0 Ll 2
| k(k, +k,k7), r Kotk (kK vk )‘
and (5.4)
) !
wo+w2K ’ 0 ' K(w1+w2K2)
= 0
w gl = ' Yo ’ 0 .
i
2 2 2
K(wi+w2K ). 0 ;W _HK (W) twytw, Kk )

o o, e < s

Il!}é) P U S T S PP R g ST SO SR TE IR SNO VRS er- 0V SIS, RS A e

¥

P

R N R

T4 Sheyaltmnd e 2 verl gl X5 BTN

=
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We recall that ko, kl' k2, Wor Wy, W, are functions of

tr ¢, tr ce, tr 3 which are now given by

tr ¢ = K2, tr c2 = 2K2 + Kh, tr 93 = 3Kh + K6. (5.5)

-~ ~

Introducing (5.4) into (3.16), we obtain
_ 2 1/2 2.] 1/2 .
s —-[}ko+k2K )/wo or [:%0/(wo+w2K EJ . (5.6}

From (3.15) we see that the first of these values of s leads
to

o 1 (5.7)

d. = b, = 0.

1 5 (5.8)

Thus, in the case provided by (5.6)1, d and b are linearly
polarized in the X and e directions respectively and in the
case provided by (5.6)2, they are linearly polarized in the

%, and X, directions respectively. The corresponding express-
ions for e and h can be obtained by introducing (5.4) and
(3.14) into (2.8). We obtain, corrresponding to (5.7),

- 2 2 - 2
e = const.{:ko+K (kl+k2+k2K )., 0, K(kl+k2K E} '

Q = const. [:O, l,.E]

and (5.9)
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and, corresponding to (5.8), we obtain

const. [O, 1, (ﬂ

t®
]

and

3=
il

const :)+m K2 0, k{w.+0 K2)
¢ o 2" 77! 1 72 *

(5.10)
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6. Shear in two directions

We now consider the case in which the direction of
propagation of the electromagnetic wave is along the x3
but the direction c¢f shear is in the x2x3 piane, the deform-
ation being described by

-axis,

o— — — A Y
X, = Xl’ X, = X2 + Axl, X, = X_ + le. (6.1)

3 3

Introducing (6.1) intoc (2.4), we obtain

0, X , kK
ol =1 A2, Ak
K, AK, K2
|
and (6.2)
22, 0, o0 0, A , x|
i
¥
cikckJ = o , Az ,  AK + (A2+K2) A A2 ' AK% .
Ol)\KI K2 K Ak, K2
It follows from (6.2) and (2.3) that
2, 2 2, 2 I
ko + kz(x +k“), klA + kzx(x +k ) i
lk“B ) 2. 2 2 2 22“
k1A + k2A(A.+K ), ko + klk + kzx (1+2"+k nl
and

(6.3)
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i |

‘ 2,2 2, 2
LN + w2(A +k7), wlk + w?A(A +Kk")

‘w = .
l “8 w, A+ A(A2+K2) w +w A2 + w A2(1+A2+K2)
| 1% 792 Y 1 2 :

3

ko’ kl’ cees W, are functions of tr ¢, tr c2 and tr c~, which

are given by

tr ¢ = A2+K ' tr ¢ = 2(A2+K2) + (A2+K2)2 ’
(604)
tr ¢ = 3%+ 2 + (0% 3,

)

Since the wave considered is propagated along the

ey

X3 axis, it follows that the relations (3.14) and (3.15) are
satisfied. We have, therefore,

ey

, d; = by =0,
§ and (6.5)
: 2
{ - =
10,378 Aygldg = 0 4
where
: _ -1 _ -1 _ -1 _ -1
‘. By = 0k )y =gy (KT g A= g, (k) - ey (K7D 5,
; (6.6)
: - -1 _ -1 _ -1 _ -1
. By Wi (K Moy =0yl )y r Bp= wy (KT) 5 = w5 (KT7) 5
1 From (6.5),, we see that s is given by
E{t
; § . -s°a | =0 (6.7)
3 aB aB ! )
1 i.e. -
) -2 _ 1 1 _ 2 1/2
s 2 (B ¥Ry,) 2 5 Ry -AL,)T + bA A,
— (6.8)

7
Tt

-

ORI TR AT e Ry




§ KRG

- 24 -

Introducing (6.8) into (6.5)2, we obtain

1/2
do _ Bypmhyy) £ C , (6.9)
d, 2hyp
where
_ _ 2
c = (All A22) + hAl2A21. (6.10)

In determining E'l, we may with advantage employ the

relation

kTt o= 1 kP-(tr k) k + 2 Etr k)2 - tr 152]11 (6.11)
det k |

~

which fcllows directly from the Cayley-Hamilton theorem.
Introducing (2.6)l into (6.11), again employing the Cayley-

Hamilton theorem and using the relation
det k = %—Etr k)3 - 3tr k tr k% + 2tr k3] ;o (6.12)

we see that the relation (6.11l) may be expressed in the form

-1 _ 2
5 = T, + T, ¢ + ¢, {6.13)

~

where Tor Tl and'% are expressible as functions of tr c ,

2 . . .
tr ¢ and tr 93. Introducing (6.2) into (6.13), we obtain

g
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-1 _ ‘ 2, 2
‘ (5 )ll = TO + rz(x +x"),
‘ -1 a 2 2 2. 2
(§ )22 = T, 0+ rlA + reA (14X%+k%), (6.14)
-1 _ -1 _ 2, 2
(§ )12 = (E )21 = rll +12A(A +x°) .

Introducing (6.14) and (6.3) into (6.6), we

obtain

>
]

2 2
11 (woro+m012K ) + A (w To+w2To wlrl+w012)

+ A K (w T +w 12-w T ) + Abw (T +T,.~T ),

2 2

T K2) + Ae(w T,+0 T, ~w, 7.+, T )

(0, Tot0, T, 0T 0 Tp= W Ty, T

22

L
+ A K%w T +w212 1 2) + A (w T +W.T wlte),

2 722

(6.15)

2.
12 A(wofl-wlr ) + Ak (wor

27U, T,)

3 - -
+ A(wefl u112+wor2 szo)'

— - 2 - —
A21 = Aw Tl wlro) + Ak (on2 w2T0+w2Tl wlre)

3 - -
+ A (on2 w210+w2T1 wlrz).

For brevity we introduce the notation

LR

POITCARLRL L A e e - o

All

A12

A2l

A22

2 L
a, + bllk + cllA '
3
alek + blek ’
a, A + b3
21 21" !
4
r

2
a22 + b22k + c22A

where, comparing (6.16) and (6.15),

(6.16)
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a = 0T + 0T (2
11 00 o2 !
2
= - 4 -
bll (w110+w2T0 wlrl+wor2) + K (weTo W, T, werl),
v o0 etc. (6.17)

Introducing (6,16} into (6.8) , denoting by s and

s, the values of s obtained by taking the positive and negative

square roots respectively in (6.8), and expanding the expres-

sions for Sy and s, as power series in A, we obtain

(0]
!

2
a + bllk + a_.a..( a

1 11 12721

-2 >
a5 * byod - aj,a,, (a8,

411"

-1 (6.18)

2]
Il

Introducing (6.16) into (6.9) and expanding the

expression obtained as a power series in A, we obtain

(d,/d,) Aa,,
S=8

1 (6.19)

>\312 (a -a ) + ¢ e .

(a,/4,)

S=-'-'S2
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7. Application to time-dependent materials

We now considcr that the dielectric constant matrix
k and specific reluctance matrix w depend not only on the

deformation gradients existing at the instant of measurement,

but on the whole history of the deformation gradients in the
ﬁ ‘ particle considered up to this time. This means that k and w
: are matrix functionals of the history of the deformation grad-
ients. However, if we restrict the deformations considered to
3 ones in which the body is taken from the undeformed state to a
certain state of deformation at some instant of time and then
held there, and we :(further make appropriate assumptions regard-

ing the nature of the functional dependence of k and w on

kel el A A

the deformation gradient history and the path by which the
material is taken from its uncGeformed state to the steady state

of deformations, we can still write the constitutive equations

L kR

for § and E in the forms (2.5) where k and w are now functions

m

of the steady state deformation gradients and the time which

- has elapsed since these were produced in the material. All
the results obtained in the paper then foilow with the proviso
- that w_, Wyr W, ang ko, kl’ k2 depend on this time as well as
on the strain invariants tr c, tr 92 and tr 93.

: This parallels the appiication of results in finite
’ elasticity theory to problems invclving stress relaxation in

viscoelastic solids held at constant deformation [3,4].

e A

) )
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8. Appendix

In this section, we outline the computation which

yields the secular equation (3.12). With (3.11), we have

P

. det (k. +s2e. € nnw ) =0. (8.1)
j i] ipq jrs'p’s qr
Let
o = =2e € nnuw ., (8.2)
ij T Tipg jrs p s qr

With (8.2), we may write (8.1) as

B v

6 det (kij+aij) = sipqejrs(kij+aij)(kpr+apr) (kqs+aqs)
I (8.3)
' - €ipqedrs (ki3kprkqs+3kidkpruqs+3kiJapraqswiJapr“qs) = 0.
We then have
eipqajrskijkprkqs = 6 det 5. (8.4)
With (8.2), we obtain
3¢, = k.. .k « = 652 [}.(kwk)‘n - (n.k.n.) (tr kwf
ipgq jrs"ij pr gs ~ NNt N ~TRTN ~~__| ! ,
(8.5)
3e € k.. a0 a = 3sh(n k.n) 2n w2 n+(tr w)2
ipg Jjrs"ij pr gs ~TRTL ~TL ~
- tr o® = 2(tr w) (n.w.n)|, (8.6)
and
Eipqejrsaijapraqs = 6 det aij = 0, (8.7)
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With (6.11), we note that the expression appearing within the

brackets in (8.6) may be written as

~

n. [%w2-(tr w)wt (tr w)eI-(tr wz)#] .n = 2det w(n.w"l.n).

(8.8)

Substituting (8.4), ..., (8.8) into (8.3) we obtain

det (k, +a,,) = ¢Sh - wS2 +06=0 (8.9)

i i)

where

¢ = (§°E°§)(§-Q-l°§) det w,

v = (mk.tr ke - n.kek.n, (8.10)

8 =

det E.

Equations (8.9) and (8.10) yield the result (3.12) and (3.13).
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